Facebook

profinfo_egzamin_adwokacki_radcowski_1960x80_v2.jpg [32.28 KB]

Bestseller
Nowość
Zapowiedź

Strefa Aplikanta
E-booki
dostęp
w 5 min.
Liczba stron: 360
Więcej informacji
-25%

Wnioskowanie przyczynowe w Pythonie Praktyczne wykorzystanie w branży technologicznej

Wnioskowanie przyczynowe w Pythonie Praktyczne wykorzystanie w branży technologicznej

Opis publikacji

Wnioskowanie przyczynowe przydaje się w sytuacji, gdy trzeba określić wpływ decyzji biznesowej na konkretny wynik, na przykład wielkość sprzedaży. Działania te są dobrze znane nauce, ale dopiero od niedawna świat poznaje korzyści z ich zastosowania w branży technologicznej. Przyczyniły się do tego postępy w uczeniu maszynowym, automatyzacji procesów i danologii. Teraz, aby uzyskać wymierne korzyści, wystarczy kilka wierszy kodu w Pythonie. Poznaj narzędzia najbardziej znanych analityków danych korzystających z Pythona! prof. Nick Huntington-Klein, autor The Effect: An Introduction to Research Design and Causality Tę książkę docenią w szczególności analitycy danych. Wyjaśniono w niej potencjał wnioskowania przyczynowego w zakresie szacowania wpływu i efektów w biznesie. Opisano klasyczne metody wnioskowania przyczynowego, w tym testy A/B, regresja liniowa, wskaźnik skłonności, metoda syntetycznej kontroli i metoda różnicy w różnicach, przy czym skoncentrowano się pr...

Wnioskowanie przyczynowe przydaje się w sytuacji, gdy trzeba określić wpływ decyzji biznesowej na konkretny wynik, na przykład wielkość sprzedaży. Działania te są dobrze znane nauce, ale dopiero od niedawna świat poznaje korzyści z ich zastosowania w branży technologicznej. Przyczyniły się do tego postępy w uczeniu maszynowym, automatyzacji procesów i danologii. Teraz, aby uzyskać wymierne korzyści, wystarczy kilka wierszy kodu w Pythonie. Poznaj narzędzia najbardziej znanych analityków danych korzystających z Pythona! prof. Nick Huntington-Klein, autor The Effect: An Introduction to Research Design and CausalityTę książkę docenią w szczególności analitycy danych. Wyjaśniono w niej potencjał wnioskowania przyczynowego w zakresie szacowania wpływu i efektów w biznesie. Opisano klasyczne metody wnioskowania przyczynowego, w tym testy A/B, regresja liniowa, wskaźnik skłonności, metoda syntetycznej kontroli i metoda różnicy w różnicach, przy czym skoncentrowano się przede wszystkim na praktycznym aspekcie tych technik. Znalazło się tu również omówienie nowoczesnych rozwiązań, takich jak wykorzystanie uczenia maszynowego do szacowania heterogenicznych efektów. Każda metoda została zilustrowana opisem zastosowania w branży technologicznej.W książce między innymi: * podstawy wnioskowania przyczynowego * problemy biznesowe jako zagadnienia z obszaru wnioskowania przyczynowego * eksperymenty geograficzne i eksperymenty z przełączaniem oddziaływania * badanie błędu systematycznego * modele graficzne i wizualizacja związków przyczynowych Najlepsza książka poświęcona najnowocześniejszym metodom, działaniu na rzeczywistych danych i rozwiązywaniu praktycznych problemów! Sean J. Taylor, główny badacz w Motif Analytics

Rozwiń opis Zwiń opis

Informacje

Rok publikacji: 2024
Liczba stron: 360
Okładka: miękka
Format: 16.5x23.5cm
Wersja publikacji: Książka papier
ISBN: 9788328908819
Kod towaru: 16558B01427KS
Dane producenta: Virtualo Sp. z o.o. | Marszałkowska 104/122 | 00-017 | Warszawa | Polska | biuro@virtualo.pl

Opinie

Brak opinii o tym produkcie.
Kup tę książkę w wersji Książka dostępna w różnych formatach Przewodnik po formatach
{{ variants[options].name }} {{ prices.brutto }} zł {{ prices.promotion_brutto }} zł
{{ variant.name }} -{{ variant.discount }}% {{ variant.price_brutto }} zł {{ variant.price_promotion_brutto }} zł
Dlaczego Profinfo.pl?
Ponad 10 tys. tytułów
Darmowa dostawa już od 170zł
Czat online z konsultantem
Promocyjne ceny i rabaty
Sprawna realizacja zamówienia
Dostęp do ebooka w 5 minut

Ostatnio oglądane produkty

Aby ponownie wybrać temat, odśwież stronę