Facebook

profinfo_egzamin_adwokacki_radcowski_1960x80_v2.jpg [32.28 KB]

Bestseller
Nowość
Zapowiedź

Strefa Aplikanta
E-booki
dostęp
w 5 min.
Liczba stron: 104
Więcej informacji
-25%

Uczenie maszynowe.. Elementy matematyki w analizie danych

Uczenie maszynowe.. Elementy matematyki w analizie danych

Opis publikacji

Na styku matematyki i informatyki Uczenie maszynowe (ML) i sztuczna inteligencja (AI). Obok komputerów kwantowych to dwa główne, gorące tematy we współczesnej informatyce. Oba nieco tajemnicze,futurystyczne i przede wszystkim wymagające posiadania dość sporej wiedzy i umiejętności matematycznych. Stąd podręczniki akademickie poświęcone sztucznej inteligencji i uczeniu maszynowemu zwykle są grube, ciężkie i naszpikowane detalami. Niesprzyjające szybkiej nauce i w rzeczywistości wcale nie takie… podręczne. Inaczej jest z tą niewielkich rozmiarów książką. Jej autor przedstawia tematy związane z AI i ML z naciskiem na matematykę, tłumaczy jednak wszystko krok po kroku ― tak by czytelnikom było łatwiej je zrozumieć. Zagadnienia matematyczne są tu objaśniane o tyle, o ile jest to konieczne dla opanowania konkretnych treści z zakresu uczenia maszynowego.  Znajdziesz tu omówienie takich kluczowych zagadnień jak: Wnioskowanie bayesowskie Metoda największej wia...

Na styku matematyki i informatykiUczenie maszynowe (ML) i sztuczna inteligencja (AI). Obok komputerów kwantowych to dwa główne, gorące tematy we współczesnej informatyce. Oba nieco tajemnicze, futurystyczne i przede wszystkim wymagające posiadania dość sporej wiedzy i umiejętności matematycznych. Stąd podręczniki akademickie poświęcone sztucznej inteligencji i uczeniu maszynowemu zwykle są grube, ciężkie i naszpikowane detalami. Niesprzyjające szybkiej nauce i w rzeczywistości wcale nie takie… podręczne.Inaczej jest z tą niewielkich rozmiarów książką. Jej autor przedstawia tematy związane z AI i ML z naciskiem na matematykę, tłumaczy jednak wszystko krok po kroku ― tak by czytelnikom było łatwiej je zrozumieć. Zagadnienia matematyczne są tu objaśniane o tyle, o ile jest to konieczne dla opanowania konkretnych treści z zakresu uczenia maszynowego. Znajdziesz tu omówienie takich kluczowych zagadnień jak: Wnioskowanie bayesowskie Metoda największej wiarygodności Modele liniowe Zmienne informatywne i entropia informacji Łańcuch Markowa Ocena modelu

Rozwiń opis Zwiń opis

Informacje

Rok publikacji: 2023
Liczba stron: 104
Okładka: miękka
Format: 14.0x20.8cm
Towar w kategorii: Informatyka
Wersja publikacji: Książka papier
ISBN: 9788328391390
Kod towaru: 42758A01427KS

Opinie

Brak opinii o tym produkcie.
Kup tę książkę w wersji Książka dostępna w różnych formatach Przewodnik po formatach
{{ variants[options].name }} {{ prices.brutto }} zł {{ prices.promotion_brutto }} zł
{{ variant.name }} -{{ variant.discount }}% {{ variant.price_brutto }} zł {{ variant.price_promotion_brutto }} zł
Dlaczego Profinfo.pl?
Ponad 10 tys. tytułów
Darmowa dostawa już od 170zł
Czat online z konsultantem
Promocyjne ceny i rabaty
Sprawna realizacja zamówienia
Dostęp do ebooka w 5 minut

Ostatnio oglądane produkty

Produkty z tej samej kategorii

Aby ponownie wybrać temat, odśwież stronę