Spark Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
Spark Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
Opis publikacji
Jeśli chcesz dostosować swoją pracę do większych zbiorów danych i bardziej złożonych kodów, potrzebna Ci jest znajomość technik rozproszonego uczenia maszynowego. W tym celu warto poznać frameworki Apache Spark, PyTorch i TensorFlow, a także bibliotekę MLlib. Biegłość w posługiwaniu się tymi narzędziami przyda Ci się w całym cyklu życia oprogramowania ? nie tylko ułatwi współpracę, ale również tworzenie powtarzalnego kodu. Dzięki tej książce nauczysz się holistycznego podejścia, które zdecydowanie usprawni współpracę między zespołami. Najpierw zapoznasz się z podstawowymi informacjami o przepływach pracy związanych z uczeniem maszynowym przy użyciu Apache Spark i pakietu PySpark. Nauczysz się też zarządzać cyklem życia eksperymentów dla potrzeb uczenia maszynowego za pomocą biblioteki MLflow. Z kolejnych rozdziałów dowiesz się, jak od strony technicznej wygląda korzystanie z platformy uczenia maszynowego. W książce znajdziesz również opis wzorców wdrażania, wnioskow...
Jeśli chcesz dostosować swoją pracę do większych zbiorów danych i bardziej złożonych kodów, potrzebna Ci jest znajomość technik rozproszonego uczenia maszynowego. W tym celu warto poznać frameworki Apache Spark, PyTorch i TensorFlow, a także bibliotekę MLlib. Biegłość w posługiwaniu się tymi narzędziami przyda Ci się w całym cyklu życia oprogramowania ? nie tylko ułatwi współpracę, ale również tworzenie powtarzalnego kodu. Dzięki tej książce nauczysz się holistycznego podejścia, które zdecydowanie usprawni współpracę między zespołami. Najpierw zapoznasz się z podstawowymi informacjami o przepływach pracy związanych z uczeniem maszynowym przy użyciu Apache Spark i pakietu PySpark. Nauczysz się też zarządzać cyklem życia eksperymentów dla potrzeb uczenia maszynowego za pomocą biblioteki MLflow. Z kolejnych rozdziałów dowiesz się, jak od strony technicznej wygląda korzystanie z platformy uczenia maszynowego. W książce znajdziesz również opis wzorców wdrażania, wnioskowania i monitorowania modeli w środowisku produkcyjnym. Najciekawsze zagadnienia: * cykl życia uczenia maszynowego i MLflow * inżynieria cech i przetwarzanie wstępne za pomocą Sparka * szkolenie modelu i budowa potoku * budowa systemu danych z wykorzystaniem uczenia głębokiego * praca TensorFlow w trybie rozproszonym * skalowanie systemu i tworzenie jego wewnętrznej architektury Właśnie takiej książki społeczność Sparka wyczekuje od dekady! Andy Petrella, autor książki Fundamentals of Data Observability
Informacje
Wydawnictwo Helion wywodzi się z grupy wydawniczej o tożsamej nazwie, powstałej w 1991 roku w Gliwicach. Od samego początku swojej... więcej→