Python i praca z danymi. Przetwarzanie, analiza, modelowanie i wizualizacja. Wydanie III. Przetwarzanie, analiza, modelowanie i wizualizacja
Python i praca z danymi. Przetwarzanie, analiza, modelowanie i wizualizacja. Wydanie III. Przetwarzanie, analiza, modelowanie i wizualizacja
Opis publikacji
Analiza danych sprawia, że dzięki ich dużym i mniejszym kolekcjom uzyskujemy wartościową wiedzę, która pozwala na podejmowanie najlepszych decyzji. Dzieje się to poprzez odkrywanie wzorców lub trendów. Obecnie Python udostępnia przeznaczone specjalnie do tego celu narzędzia i biblioteki. Możemy więc łatwo korzystać z wyrafinowanych technik wydobywania wiedzy z danych. Aby jednak osiągnąć zamierzone efekty, trzeba dobrze poznać zarówno metodologię analizy danych, jak i zasady pracy ze służącymi do tego narzędziami. Dzięki tej książce zdobędziesz wszystkie potrzebne informacje i umiejętności, aby skutecznie używać Pythona do analizy danych. Omówiono tu niezbędne podstawy statystyki i zasady analizy danych. Wyczerpująco przedstawiono zaawansowane zagadnienia dotyczące przygotowania, przetwarzania i modelowania danych, a także ich wizualizacji. W zrozumiały sposób wyjaśniono takie procesy jak inteligentne przetwarzanie i analizowanie danych za pomocą algorytmów uczenia...
Analiza danych sprawia, że dzięki ich dużym i mniejszym kolekcjom uzyskujemy wartościową wiedzę, która pozwala na podejmowanie najlepszych decyzji. Dzieje się to poprzez odkrywanie wzorców lub trendów. Obecnie Python udostępnia przeznaczone specjalnie do tego celu narzędzia i biblioteki. Możemy więc łatwo korzystać z wyrafinowanych technik wydobywania wiedzy z danych. Aby jednak osiągnąć zamierzone efekty, trzeba dobrze poznać zarówno metodologię analizy danych, jak i zasady pracy ze służącymi do tego narzędziami. Dzięki tej książce zdobędziesz wszystkie potrzebne informacje i umiejętności, aby skutecznie używać Pythona do analizy danych. Omówiono tu niezbędne podstawy statystyki i zasady analizy danych. Wyczerpująco przedstawiono zaawansowane zagadnienia dotyczące przygotowania, przetwarzania i modelowania danych, a także ich wizualizacji. W zrozumiały sposób wyjaśniono takie procesy jak inteligentne przetwarzanie i analizowanie danych za pomocą algorytmów uczenia maszynowego: regresji, klasyfikacji, analizy głównych składowych czy analizy skupień. Nie zabrakło praktycznych przykładów przetwarzania języka naturalnego i analizy obrazów. Ciekawym zagadnieniem jest również wykonywanie obliczeń równoległych za pomocą biblioteki Dask. W książce między innymi: * podstawy analizy danych i korzystanie z bibliotek NumPy i pandas * praca z danymi w różnych formatach * interaktywna wizualizacja z bibliotekami Matplotlib, seaborn i Bokeh * inżynieria cech, analiza szeregów czasowych i przetwarzanie sygnałów * zaawansowana analiza danych tekstowych i obrazów Python: wydobywaj z danych wiedzę o wielkiej wartości!