O twierdzeniach i hipotezach. Matematyka według Delty
O twierdzeniach i hipotezach. Matematyka według Delty
Opis publikacji
Zbiór 44 artykułów, pochodzących z czasopisma Delta, adresowanych do szerokiego grona czytelników, którzy chcieliby poznać najciekawsze osiągnięcia królowej nauk. W sposób wolny od suchego formalizmu i naukowego żargonu, a jednocześnie ścisły i precyzyjny kilkudziesięciu autorów – profesjonalistów w swojej dziedzinie – opisuje te twierdzenia i hipotezy, które zdeterminowały współczesny obraz matematyki. Bogactwo tematów, żywy język i fakt, że informacje podawane są z pierwszej ręki, przez tych, którzy tworzą matematykę, sprawiają, że książka okazuje się nie lada gratką zarówno dla tych, którzy od zawsze pasjonowali się tą dziedziną wiedzy, jak i tych, którzy dopiero teraz mają szansę poznać jej prawdziwe, pasjonujące oblicze. Przedstawiamy tu serię artykułów o słynnych twierdzeniach (prawo wielkich liczb, paradoksalny rozkład kuli Banacha-Tarskiego, twierdzenie o czterech barwach, twierdzenie Godla) i o fundamentalnych pojęciach (charakterystyka Eulera,wymiar, li...
Zbiór 44 artykułów, pochodzących z czasopisma Delta, adresowanych do szerokiego grona czytelników, którzy chcieliby poznać najciekawsze osiągnięcia królowej nauk. W sposób wolny od suchego formalizmu i naukowego żargonu, a jednocześnie ścisły i precyzyjny kilkudziesięciu autorów – profesjonalistów w swojej dziedzinie – opisuje te twierdzenia i hipotezy, które zdeterminowały współczesny obraz matematyki. Bogactwo tematów, żywy język i fakt, że informacje podawane są z pierwszej ręki, przez tych, którzy tworzą matematykę, sprawiają, że książka okazuje się nie lada gratką zarówno dla tych, którzy od zawsze pasjonowali się tą dziedziną wiedzy, jak i tych, którzy dopiero teraz mają szansę poznać jej prawdziwe, pasjonujące oblicze. Przedstawiamy tu serię artykułów o słynnych twierdzeniach (prawo wielkich liczb, paradoksalny rozkład kuli Banacha-Tarskiego, twierdzenie o czterech barwach, twierdzenie Godla) i o fundamentalnych pojęciach (charakterystyka Eulera, wymiar, liczby rzeczywiste i zespolone, równowaga Nasha). O hipotezach, których nikt dotąd nie potrafił udowodnić (...), jak i o tych, które "na naszych oczach" stają się twierdzeniami. Ze Wstępu