Deep learning z TensorFlow 2 i Keras dla zaawansowanych. Sieci GAN i VAE, deep RL, uczenie nienadzorowane, wykrywanie i segmentacja obiektów i nie tylko. Wydanie II. Sieci GAN i VAE, deep RL, uczenie nienadzorowane, wykrywanie i segmentacja obiektów i nie tylko
Deep learning z TensorFlow 2 i Keras dla zaawansowanych. Sieci GAN i VAE, deep RL, uczenie nienadzorowane, wykrywanie i segmentacja obiektów i nie tylko. Wydanie II. Sieci GAN i VAE, deep RL, uczenie nienadzorowane, wykrywanie i segmentacja obiektów i nie tylko
Opis publikacji
Oto propozycja dla specjalistów zajmujących się programowaniem sztucznej inteligencji i studentów kształcących się w tej dziedzinie. Autor przybliża tajniki tworzenia sieci neuronowych stosowanych w uczeniu głębokim i pokazuje, w jaki sposób używać w tym celu bibliotek Keras i TensorFlow. Objaśnia zagadnienia dotyczące programowania AI zarówno w teorii, jak i praktyce. Liczne przykłady, czytelna oprawa graficzna i logiczne wywody sprawiają,że to skuteczne narzędzie dla każdego, kto chce się nauczyć budowania sieci neuronowych typu MLP, CNN i RNN. Książka wprowadza w teoretyczne fundamenty uczenia głębokiego - znalazły się w niej wyjaśnienia podstawowych pojęć związanych z tą dziedziną i różnice pomiędzy poszczególnymi typami sieci neuronowych. Opisano tutaj również metody programowania algorytmów używanych w uczeniu głębokim i sposoby ich wdrażania. Dzięki lekturze lepiej zrozumiesz sieci neuronowe, nauczysz się ich tworzenia i zastosowania w różnych projektach z z...
Oto propozycja dla specjalistów zajmujących się programowaniem sztucznej inteligencji i studentów kształcących się w tej dziedzinie. Autor przybliża tajniki tworzenia sieci neuronowych stosowanych w uczeniu głębokim i pokazuje, w jaki sposób używać w tym celu bibliotek Keras i TensorFlow. Objaśnia zagadnienia dotyczące programowania AI zarówno w teorii, jak i praktyce. Liczne przykłady, czytelna oprawa graficzna i logiczne wywody sprawiają, że to skuteczne narzędzie dla każdego, kto chce się nauczyć budowania sieci neuronowych typu MLP, CNN i RNN. Książka wprowadza w teoretyczne fundamenty uczenia głębokiego - znalazły się w niej wyjaśnienia podstawowych pojęć związanych z tą dziedziną i różnice pomiędzy poszczególnymi typami sieci neuronowych. Opisano tutaj również metody programowania algorytmów używanych w uczeniu głębokim i sposoby ich wdrażania. Dzięki lekturze lepiej zrozumiesz sieci neuronowe, nauczysz się ich tworzenia i zastosowania w różnych projektach z zakresu AI. Polecamy tę książkę każdemu, kto: * chce zrozumieć, jak działają sieci neuronowe i w jaki sposób się je tworzy * specjalizuje się w uczeniu głębokim lub zamierza lepiej poznać tę dziedzinę * posługuje się sieciami neuronowymi w programowaniu * chce się nauczyć stosować biblioteki Keras i TensorFlow w uczeniu głębokim
Informacje
Wydawnictwo Helion wywodzi się z grupy wydawniczej o tożsamej nazwie, powstałej w 1991 roku w Gliwicach. Od samego początku swojej... więcej→