Sto dowodów matematycznych w dwóch krokach z rozwiązaniami. Szkoła ponadpodstawowa
Sto dowodów matematycznych w dwóch krokach z rozwiązaniami. Szkoła ponadpodstawowa
Opis publikacji
Wielu uczniów i nauczycieli nie lubi zadań dowodowych i uważa je za trudne. Jednak wystarczy zauważyć, że twierdzenie jest stwierdzeniem faktu, a dowód – wyjaśnieniem, dlaczego to twierdzenie jest prawdziwe. Rozwiązując dowolne zadanie rachunkowe,wielokrotnie dowodzimy prawdziwość drobnych faktów, nawet tego nie zauważając. Dowód to każde uzasadnienie „dlaczego” coś jest prawdziwe. W tym zbiorze zajmiemy się takimi twierdzeniami, których dowody wymagają tylko dwóch kroków. Zazwyczaj jeden z tych kroków wykorzystuje podane założenia, drugi – posiadaną wiedzę matematyczną. Wiele twierdzeń ma taką formę: Twierdzenie 1. Jeśli zdanie A jest prawdziwe, to zdanie B też jest prawdziwe. Dowód takiego twierdzenia (implikacji) to wyjaśnienie, dlaczego zdanie B musi być prawdziwe, jeśli zdanie A jest prawdziwe. Dowód wprost zaczyna się od założenia, że zdanie A jest prawdziwe (w końcu piszemy „jeśli A jest prawdziwe” i to jest nasze założenie). Zresztą, jeśli zdanie A jest...
Wielu uczniów i nauczycieli nie lubi zadań dowodowych i uważa je za trudne. Jednak wystarczy zauważyć, że twierdzenie jest stwierdzeniem faktu, a dowód – wyjaśnieniem, dlaczego to twierdzenie jest prawdziwe. Rozwiązując dowolne zadanie rachunkowe, wielokrotnie dowodzimy prawdziwość drobnych faktów, nawet tego nie zauważając. Dowód to każde uzasadnienie „dlaczego” coś jest prawdziwe.W tym zbiorze zajmiemy się takimi twierdzeniami, których dowody wymagają tylko dwóch kroków. Zazwyczaj jeden z tych kroków wykorzystuje podane założenia, drugi – posiadaną wiedzę matematyczną.Wiele twierdzeń ma taką formę: Twierdzenie 1. Jeśli zdanie A jest prawdziwe, to zdanie B też jest prawdziwe.Dowód takiego twierdzenia (implikacji) to wyjaśnienie, dlaczego zdanie B musi być prawdziwe, jeśli zdanie A jest prawdziwe. Dowód wprost zaczyna się od założenia, że zdanie A jest prawdziwe (w końcu piszemy „jeśli A jest prawdziwe” i to jest nasze założenie). Zresztą, jeśli zdanie A jest fałszywe, to nie mamy się czym martwić. A raczej – w takiej sytuacji – nie musimy nic robić, bo to nie ma znaczenia. A więc, przypuszczamy, że zdanie A jest prawdziwe i zapisujemy to w dowodzie jako pierwszy krok. To jest informacja, której możemy użyć w dalszych działaniach. Dalej postępujemy logicznie, krok po kroku, aż dojdziemy do stwierdzenia, że zdanie B jest prawdziwe.Ważne jest, aby takie działania zapisywać w języku polskim. Są wprawdzie znaki matematyczne, którymi można zapisać część rozumowania, ale dla czytelności takiego zapisu nie należy moim zdaniem zastąpić całkowicie języka polskiego w zapisie.Koniec rozumowania zapisujemy słowami „koniec dowodu” lub innym oznaczeniem (cbdu – co było do udowodnienia, cnd – czego należało dowieść, qed = quod erat demonstrandum lub znak końca dowodu ∎ nazywany czasem „halmosem”).